42Technology

Stromspeicher: Mit der richtigen Batterietechnologie auf der sicheren Seite

Lithium-Eisen-Phosphat (LiFePO)-Akkus

Stromspeicher sind nicht gleich Stromspeicher. Die verbaute Batterietechnologie variiert und damit auch die Sicherheit der Batteriespeicher. Wir entwirren die Fäden und schildern hier die verschiedenen Batterietechnologien und ihre damit verbundenen Vor- und Nachteile.

Sicherheit geht immer vor. Denn wenn dies nicht der Fall ist, können die Folgen verheerend sein: Auch Batteriespeicher können im Worst Case brennen, wodurch eine Druckwelle erzeugt werden kann - eine Verpuffung. Eine Verpuffung ist ein schneller Verbrennungsvorgang, auch "Deflagration" genannt, und wird durch eine etwas langsamere Verbrennung hervorgerufen als bei der Detonation.

Der Hebel, bei dem die Batterietechnologie ansetzen sollte, ist daher die Brandvermeidung. Und der Weg dorthin führt über die Wahl der richtigen Technologieform.

 

Die wichtigsten Fakten auf einen Blick:

  • Es ist prinzipiell sehr unwahrscheinlich, dass Batteriespeicher zu brennen anfangen.
  • Insbesondere im stationären Bereich gibt es kaum äussere Einflüsse, die den Speicher beschädigen und somit gefährden können.
  • Doch auch wenn die Wahrscheinlichkeit einer Beschädigung des Speichers durch äussere Einflüsse sehr gering ist, gibt es einige sicherheitsrelevante Aspekte, die bei der Wahl der Speichertechnologie berücksichtigt werden sollten. Denn es gibt eine Reihe guter Gründe, warum wir mit neoom Batterien ganz bewusst auf die Lithium-Eisen-Phosphat Technologie setzen. Welche das sind, erläutern wir in den folgenden technischen Ausführungen.

 

Rising Star: Lithium-Ionen-Akkus 

Innerhalb der Lithium-Ionen-Akkus werden anhand der Zelltechnologie vor allem zwei wichtige Arten unterschieden: Zellen auf Basis von Lithium-Nickel-Mangan-Cobalt-Oxiden (NMC) und Lithium-Eisen-Phosphat (LFP).  

Lithium-Nickel-Mangan-Cobalt-Oxide (NMC) 

Die NMC Technologie hat auch Vorteile: Die Akkus können schnell geladen werden und haben eine hohe Energiedichte, werden jedoch nicht alt. Für Elektroautos sind sie wegen der hohen Energiedichte und dem geringen Platzbedarf die richtige Wahl. Der Nachteil: Bei Mikrorissen entweicht viel Energie auf wenig Raum, dies führt zu hoher Hitze und somit einem Brand. Aber nicht nur Mikrorisse können bei Zellen mit chemisch und thermisch instabilem Kathodenmaterial wie Lithium-Kobalt-Oxid (LCO) oder Lithium-Nickel-Mangan-Kobalt-Oxid (NMC) Brände verursachen. Auch eine starke Wärmeentwicklung bei Überladung, ein interner oder externer Kurzschluss, mechanische Beschädigung, produktionsbedingte Verunreinigungen oder starke äussere Hitzeeinwirkung können eine zellinterne exothermische chemische Reaktion hervorrufen. Was dann folgt, ist eine verheerende Kettenreaktion: Die freiwerdende Wärmeenergie erhöht die Reaktionsgeschwindigkeit der Zellchemie und lässt die zellinterne Temperatur weiter ansteigen. Wird eine spezifische Temperaturgrenze überschritten, kann dieser sich selbstbeschleunigende Prozess nicht mehr gestoppt werden. Diese Temperaturgrenze hängt von der eingesetzten Zell-Chemie ab. Bei Lithium-Kobalt-Oxid (LCO) beträgt sie beispielsweise 150°C. Bei Erreichen der Temperaturgrenze kommt es zum Thermal Runway (thermisches Durchgehen), der schließlich zum Brand oder der Explosion der Zelle führen kann. Weil der im Kathodenmaterial gebundene Sauerstoff (es handelt sich schliesslich um die Lithium-Kobalt-Oxid Technologie) freigesetzt wird, ist ein derartiger Zellbrand nur sehr schwer zu löschen und brennt selbst unter Wasser.

Tests mit einem simulierten Kurzschluss zeigen das Entstehen sehr hoher Temperaturen von über 700°C, die den Separator zwischen den einzelnen Zellen schmelzen und somit auf die anderen Zellen übergreifen können und in dem angesprochenen unlöschbaren Brand resultieren.  

Bei einem Auto ist dies unkritischer, da ein Feuer oft schnell bemerkt wird und das Elektroauto meist rasch verlassen werden kann. Tesla verbaut in seinen Elektroautos daher unter anderem LFP-Batterien. Zum Abschluss noch ein Vorteil: NMC Akkus sind aufgrund der Massenfertigung der Automobilindustrie mittlerweile günstiger.  

Lithium-Eisen-Phosphat (LiFePO)-Akkus 

Lithium-Eisen-Phosphat Akkus weisen hingegen wegen ihrer niedrigeren Nennspannung von 3,2 V eine geringere Energiedichte als viele andere Kathodenmaterialien wie NMC oder NCA und somit größeren Platzbedarf auf.  

Daher eignen sie sich besser für Heimspeicher, weil im Keller Platzbedarf kein Problem darstellt – im Gegensatz zu einem Auto. Sollten Mikrorisse entstehen, verursachen LiFePO eine geringere Hitze und stellen somit keine Brandgefahr dar. In Tests haben selbst voll geladene Lithium-Eisen-Phosphat-Batterien keine vergleichsweise Reaktion wie NMC- oder NCA-Zellen gezeigt. Die Li-Fe-PO-Akkus haben weder gebrannt noch sind kritische Temperaturen entstanden, die den Seperator schmelzen oder auf andere Zellen übergreifen können. Dies stellte auch eine unabhängige, durch das deutsche Bundesministerium für Wirtschaft und Energie (BMWi) geförderte Studie ("Kompendium: Li‐Ionen‐Batterien") des Verbandes der Elektrotechnik, Elektronik und Informationstechnik (VDE) und der Deutschen Kommission Elektrotechnik Elektronik Informationstechnik (DKE) fest. Die Studie vergleicht die verschiedenen Lithiumbatterietechnologien und schlussfolgert: "Im Gegensatz zu den Oxiden zeigt Lithium-Eisen-Phosphat (LFP) bis 300 °C keinerlei thermische Effekte. LFP ist u. a. dadurch sicherheitstechnisch ausser Konkurrenz.“ Und betont nochmals: „Im Unglücksfall kann es bei den Oxiden zur Entwicklung von Sauerstoff mit Brandfolgen kommen. Besonders kritisch ist in diesem Zusammenhang NCA (Lithium-Nickel-Cobalt-Aluminium-Oxid) zu sehen." 

Schildkröte vs. Hase 

Die Unterschiede zwischen der NMC/NCA und Lithium-Eisen-Phosphat-Technologie lassen sich bildlich veranschaulichen: 

Kennen Sie die Fabel vom Wettrennen zwischen der Schildkröte und dem Hasen? Falls nicht, hier die Zusammenfassung in aller Kürze: In der Fabel des altgriechischen Fabeldichters Äsop verhöhnt ein Hase die langsame Schildkröte. Die Schildkröte fordert den Hasen daraufhin zu einem Rennen auf. Schnell ist der Hase um die Hasenlänge vorn und weit vor der Schildkröte. Zuversichtlich, dass er das Rennen ohnehin gewinnt, macht er während des Rennens ein Nickerchen. Doch als der Hase aufwacht, muss er feststellen, dass die Schildkröte, die langsam aber stetig ging, das Rennen gewonnen hatte. Die Moral aus der Geschichte: Ausdauer gewinnt.

Und deshalb setzen wir lieber auf Schildkröten als auf Hasen. Die Schildkröten sind in unserem Beispiel die Lithium-Eisen-Phosphat-Akkus: Sie laden langsamer, weisen eine geringe Energiedichte auf, aber werden sehr alt.

Die Hasen hingegen sind die Akkus mit NMC / NCA Technologie: Schnell, einer hohen Energiedichte – doch sie werden nicht alt. Dass sie schneller laden, bringt auch keinen Vorteil, da Heimspeicher nicht in 5-10 Minuten aufgeladen werden, sondern in 3-4 Stunden. Sie verlieren dadurch das Rennen.